Binding of solvated peptide (EPLQLKM) with a graphene sheet via simulated coarse-grained approach.
نویسندگان
چکیده
Binding of a solvated peptide A1 ((1)E (2)P (3)L (4)Q (5)L (6)K (7)M) with a graphene sheet is studied by a coarse-grained computer simulation involving input from three independent simulated interaction potentials in hierarchy. A number of local and global physical quantities such as energy, mobility, and binding profiles and radius of gyration of peptides are examined as a function of temperature (T). Quantitative differences (e.g., the extent of binding within a temperature range) and qualitative similarities are observed in results from three simulated potentials. Differences in variations of both local and global physical quantities suggest a need for such analysis with multiple inputs in assessing the reliability of both quantitative and qualitative observations. While all three potentials indicate binding at low T and unbinding at high T, the extent of binding of peptide with the temperature differs. Unlike un-solvated peptides (with little variation in binding among residues), solvation accentuates the differences in residue binding. As a result the binding of solvated peptide at low temperatures is found to be anchored by three residues, (1)E, (4)Q, and (6)K (different from that with the un-solvated peptide). Binding to unbinding transition can be described by the variation of the transverse (with respect to graphene sheet) component of the radius of gyration of the peptide (a potential order parameter) as a function of temperature.
منابع مشابه
Abstract Submitted for the MAR13 Meeting of The American Physical Society Peptides (P1, P2 and its mutations) binding with a graphene sheet: an all-atom to all-residue hierarchical coarse-grained approach1
Submitted for the MAR13 Meeting of The American Physical Society Peptides (P1, P2 and its mutations) binding with a graphene sheet: an all-atom to all-residue hierarchical coarse-grained approach1 ZHIFENG KUANG, BARRY FARMER, Air Force Research Laboratory, RAS PANDEY, University of Southern Mississippi — Binding of peptide P2 (EPLQLKM) [1] and its mutations (P2G, P2Q) to a graphene sheet are st...
متن کاملReconstruction of atomistic details from coarse-grained structures
We present an algorithm to reconstruct atomistic structures from their corresponding coarse-grained (CG) representations and its implementation into the freely available molecular dynamics (MD) program package GROMACS. The central part of the algorithm is a simulated annealing MD simulation in which the CG and atomistic structures are coupled via restraints. A number of examples demonstrate the...
متن کاملGrain Refinement of Dual Phase Steel via Tempering of Cold-Rolled Martensite
A microstructure consisting of ultrafine grained (UFG) ferrite with average grain size of ~ 0.7 µm and dispersed nano-sized carbides was produced by cold-rolling and tempering of the martensite starting microstructure in a low carbon steel. Subsequently, fine grained dual phase (DP) steel consisting of equiaxed ferrite grains with average size of ~ 5 µm and martensite islands with average size ...
متن کاملReintroducing explicit solvent to a solvent-free coarse-grained model.
A unique coarse-grained modeling scheme that combines a systematic, solvent-free multiscale coarse-graining algorithm for a complex macromolecule with an existing coarse-grained solvent model is proposed. We show that this procedure efficiently and reliably describes the interactions for complex macromolecules, using the specific example of dendrimers binding phenanthrenes in water. The experim...
متن کاملAdaptive resolution simulation of an atomistic protein in MARTINI water.
We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e.,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 140 20 شماره
صفحات -
تاریخ انتشار 2014